FACTORIZACIÓN

                   QUÉ ES LA FACTIRIZACIÓN


En matemáticas, la factorización es una técnica que consiste en la descomposición de una expresión matemática (que puede ser un número o una suma). antes que todo, hay que decir que todo polinomio se puede factorizar utilizando de Principales conjuntos numéricos Números Reales, si se consideran los Números Complejos. Existen métodos de factorización para algunos casos especiales, que son:

  1. diferencia de cuadrados
  2. Suma o diferencia de potencias impares iguales.
  3. Trinomio cuadrado perfecto.
  4. Trinomio de la forma x²+bx+c
  5. Trinomio de la forma ax²+bx+c.
  6. Factor común.


 Factorización de un número

Para factorizar un número o descomponerlo en factores efectuamos sucesivas divisiones entre sus divisores primos hasta obtener un uno como cociente.

Para realizar las divisiones utilizaremos una barra vertical, a la derecha escribimos los divisores primos y a la izquierda los cocientes.

Explicaciones y ejemplos de factorizar - 1

432 = 2· 33



Sacar factor común

Sacar factor común a un polinomio consiste en aplicar la propiedad distributiva.

a · x + b · x + c · x = x (a + b + c)

Una raíz del polinomio será siempre x = 0

x3 + x2 = x2 (x + 1)

La raíces son: x = 0 y x = − 1

Doble extracción de factor común

x2 − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b)

Diferencia de cuadrados

Una diferencia de cuadrados es igual a suma por diferencia.

a2 − b2 = (a + b) · (a − b)

x2 − 4 = (X + 2) · (X − 2)

Las raíces son X = − 2 y X = 2

Trinomio cuadrado perfecto

Un trinomio cuadrado perfecto es el desarrollo de un un binomio al cuadrado.

a2 + 2 a b + b2 = (a + b)2

Explicaciones y ejemplos de factorizar - 2

a2 − 2 a b + b2 = (a − b)2

Explicaciones y ejemplos de factorizar - 3


Trinomio de segundo grado

Para descomponer en factores el trinomio de segundo grado P(x) = a x2 + bx +c, se iguala a cero y se resuelve la ecuación de 2º grado. Si las soluciones a la ecuación son x1 y x2, el polinomio descompuesto será:

a x2 + bx +c = a · (x -x) · (x -x)

Explicaciones y ejemplos de factorizar - 4

Explicaciones y ejemplos de factorizar - 5

Explicaciones y ejemplos de factorizar - 6

Explicaciones y ejemplos de factorizar - 7

Polinomio de grado superior a dos

Utilizamos el teorema del resto y la regla de Ruffini.

Descomposición de un polinomio de grado superior a dos y cálculo de sus raíces

P(x) = 2x4 + x3 − 8x2 − x + 6

1

Tomamos los divisores del término independiente: ±1, ±2, ±3.

2

Aplicando el teorema del resto sabremos para que valores la división es exacta.

P(1) = 2 · 14 + 13 − 8 · 12 − 1 + 6 = 2 + 1− 8 − 1 + 6 = 0

3

Dividimos por Ruffini.

Explicaciones y ejemplos de factorizar - 8

4

Por ser la división exactaD = d · c

(x −1) · (2x3 + 3x2 − 5x − 6 )

Una raíz es x = 1.

Continuamos realizando las mismas operaciones al segundo factor.

Volvemos a probar por 1 porque el primer factor podría estar elevado al cuadrado.

P(1) = 2 · 13 + 3 · 12 − 5 · 1 − 6≠ 0

P(−1) = 2 · (− 1)3 + 3 ·(− 1)2 − 5 · (− 1) − 6= −2 + 3 + 5 − 6 = 0

Explicaciones y ejemplos de factorizar - 9

(x −1) · (x +1) · (2x2 +x −6)

Otra raíz es x = -1.

El tercer factor lo podemos encontrar aplicando la ecuación de 2º grado o tal como venimos haciéndolo, aunque tiene el inconveniente de que sólo podemos encontrar raíces enteras.

El 1 lo descartamos y seguimos probando por − 1.

P(−1) = 2 · (−1)2 + (−1) − 6 ≠ 0

P(2) = 2 · 22 + 2 − 6 ≠ 0

P(−2) = 2 · (−2)2 + (−2) − 6 = 2 · 4 − 2 − 6 = 0

Explicaciones y ejemplos de factorizar - 10

(x −1) · (x +1) · (x +2) · (2x −3 )

Sacamos factor común 2 en último binomio.

2x −3 = 2 (x − 3/2)

La factorización del polinomio queda:

P(x) = 2x4 + x3 − 8x2 − x + 6 = 2 (x −1) · (x +1) · (x +2) · (x − 3/2)

Las raíces son : x = 1, x = − 1, x = −2 y x = 3/2







Comentarios

Entradas populares de este blog

CONJUNTOS NUMÉRICOS

PROPIEDADES DE EXPRESIONES ALGEBRAICAS

SUMA Y RESTA DE FRACCIONES HETEROGENEAS Y HOMOGENEAS